Vanadium - NutraHacker Journal Club
Back to Table of Contents
Background: Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. Objective: This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. Results and conclusions: Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Vanadium and biomarkers of inflammation and oxidative stress in diabetes: A systematic review of animal studies
Background: Oxidative stress has a significant role in the commencement and development of hyperglycemia. Vanadium, as a transitional metal with redox properties, enters the redox process, produces free radicals, and distracts the pro-antioxidant balance. The present animal systematic review aimed to assess the effect of vanadium supplementation on inflammation and oxidative stress biomarkers in diabetes-induced animals. Methods: A systematic search was conducted using the PubMed, Scopus, and web of science databases from 1990 to 2021, according to the inclusion and exclusion criteria. The search strategy was based on the guidelines for systematic review of animal experiments and Preferred Reporting Items for Systematic Reviews (PRISMA). Criteria for eligibility were animal-based studies, evaluating the therapeutic effects of vanadium on inflammatory and oxidative stress biomarkers in diabetes. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool was used for assessing the methodological quality of included studies. Results: In the present study, 341 articles were evaluated out of which 42 studies were eligible for inclusion. The majority of the studies confirmed the advantageous properties of vanadium on inflammatory and oxidative stress biomarkers. A minor risk of bias was reported, based on the SYRCLE's tool. Conclusion: According to the findings, well-designed clinical trials are warranted to assess the long-lasting effects of various vanadium compounds on inflammatory and oxidative stress biomarkers.
Genotoxic And Cytotoxic Effects Of Oral Vanadyl Sulphate
Background: Vanadyl sulphate is available as herbal medicine against diabetes mellitus and body building supplement, over the counter worldwide. The available data on its safety is controversial and inadequate. The objective of this study was to analyse its safety in usual therapeutic dose range. Methods: It was an experimental study carried out at the Department of Biochemistry & Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan, from Jun 2014 to Oct 2018. The study was carried out on 105 Sprague Dawley rats for duration of 24 weeks. The animals were randomly distributed in three groups of 35 each. The group I rats were marked as control while rats of group II & III were administered vanadyl sulphate 0.06mg/day and 0.3mg/day respectively. Alanine amino transferase (ALT) and Malondialdehyde (MDA) were measured in serum while comet assay was performed on WBCs. Results: The plasma levels of ALT and MDA were significantly raised in group II and III subjects. Single cell gel electrophoresis (SCGE) / comet assay showed minimal "tail moment" in control group and increased tail moment in group II and III in a dose dependent manner which indicates dsDNA breaks. Conclusions: It was observed that vanadyl sulphate causes hepatocellular toxicity, oxidative stress and damage to the DNA in usual therapeutic/ supplemental doses. Due to hazardous effects, its use in humans as alternate medicine may be reviewed.
Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil
Background: Numerous investigations have demonstrated the beneficial effect of vanadium salts on diabetes in streptozotocin (STZ)-diabetic rats, in rodents with genetically determined diabetes and in human subjects. The amelioration of diabetes included the abolition of hyperglycemia, preservation of insulin secretion, reduction in hepatic glucose production, enhanced glycolysis and lipogenesis and improved muscle glucose uptake through GLUT4 elevation and translocation. The molecular basis of vanadium salt action is not yet fully elucidated. Although evidence has been provided that the insulin receptor is activated, the possibility exists that cytosolic non-receptor tyrosine kinase, direct phosphorylation of IRS-1 and activation of PI3-K, leading to GLUT4 translocation, are involved. The raised phosphorylation of proteins in the insulin signaling pathway appears to be related to the inhibition of protein tyrosine phosphatase (PTPase) activity by vanadium salts. Novel experiments: The model utilized in our study was Psammomys obesus (sand rat), a desert gerbil which becomes hyperglycemic and hyperinsulinemic on an ad libitum high energy (HE) diet. In contrast to the previously investigated insulin deficient models, vanadyl sulphate was used to correct insulin resistance and hyperinsulinemia, which led to beta-cell loss. Administration of 5 mg/kg vanadyl sulfate for 5 days resulted in prolonged restoration of normoglycemia and normoinsulinemia in most animals, return of glucose tolerance to normal, and a reduction of hepatic phosphoenolpyruvate carboxykinase activity. There was no change in food consumption and in regular growth during or after the vanadyl treatment. Pretreatment with vanadyl sulfate, followed by transfer to a HE diet, significantly delayed the onset of hyperglycemia. Hyperinsulinemic-euglycemic clamp of vanadyl sulfate treated Psammomys demonstrated an improvement in glucose utilization. However, vanadyl sulfate was ineffective when administered to animals which lost their insulin secretion capacity on protracted HE diet, but substantially reduced the hyperglycemia when given together with exogenous insulin. The in vitro insulin activation of liver and muscle insulin receptors isolated from vanadyl treated Psammomys was ineffective. The in vivo vanadyl treatment restored muscle GLUT4 total protein and mRNA contents in addition to membrane GLUT4 protein, in accordance with the increased glucose utilization during the clamp study. These results indicate that short-term vanadyl sulfate treatment corrects the nutritionally induced, insulin resistant diabetes. This action requires the presence of insulin for its beneficial effect. Thus, vanadyl action in P. obesus appears to be the result of insulin potentiation rather than mimicking, with activation of the signaling pathway proteins leading to GLUT4 translocation, probably distal to the insulin receptor.
Long-term effectiveness of oral vanadyl sulphate in streptozotocin-diabetic rats
Recent studies have demonstrated the insulin-like effects of oral vanadyl sulphate in the streptozotocin-diabetic rat, including the amelioration of hyperglycaemia and the prevention of diabetes-related cardiac and adipose tissue dysfunction. However, the possibility that vanadyl treatment, routinely initiated at 3 days after the induction of diabetes, had prevented the full cytotoxic destruction of the beta cell, and thus accounted for the apparent anti-diabetic properties of vanadyl was questioned. Hence in the present study, we examined the effectiveness of vanadyl sulphate as a glucose-lowering and anti-diabetic agent when administration was delayed from the time of induction of diabetes. Male Wistar rats were injected with a single intravenous dose of streptozotocin (55 mg/kg). Vanadyl sulphate was administered in the drinking water at a concentration of 0.75 mg/ml from 3, 10 and 17 days after the streptozotocin injection and treatment was then maintained for 5 months. Vanadyl intake was accompanied by lowered serum levels of triglyceride and cholesterol with no associated enhancement in circulating insulin. Vanadyl-treated diabetic animals showed improved glucose tolerance while insulin release in vivo was still markedly lower than in non-diabetic rats. Adipose tissue function, as expressed by basal and epinephrine-stimulated lipolysis in isolated adipose tissue, was also normalized in vanadyl-treated diabetic animals. These responses were all observed whether vanadyl treatment was initiated 3, 10 or 17 days after induction of diabetes. Finally, prolonged treatment with vanadyl sulphate (in this case up to 5 months) did not cause any apparent hepatic toxicity as assessed histologically. Diabetes-induced morphological changes in the kidney were also prevented by vanadyl treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Vanadium and diabetes
We demonstrated in 1985 that vanadium administered in the drinking water to streptozotocin (STZ) diabetic rats restored elevated blood glucose to normal. Subsequent studies have shown that vanadyl sulfate can lower elevated blood glucose, cholesterol and triglycerides in a variety of diabetic models including the STZ diabetic rat, the Zucker fatty rat and the Zucker diabetic fatty rat. Long-term studies of up to one year did not show toxicity in control or STZ rats administered vanadyl sulfate in doses that lowered elevated blood glucose. In the BB diabetic rat, a model of insulin-dependent diabetes, vanadyl sulfate lowered the insulin requirement by up to 75%. Vanadyl sulfate is effective orally when administered by either single dose or chronic doses. It is also effective by the intraperitoneal route. We have also been able to demonstrate marked long-term effects of vanadyl sulfate in diabetic animals following treatment and withdrawal of vanadyl sulfate. Because vanadyl sulfate is not well absorbed we have synthesized and tested a number of organic vanadium compounds. One of these, bismaltolato-oxovanadium IV (BMOV), has shown promise as a therapeutic agent. BMOV is 2-3x more potent than vanadyl sulfate and has shown less toxicity. Recent studies from our laboratory have shown that the effects of vanadium are not due to a decrease in food intake and that while vanadium is deposited in bone it does not appear to affect bone strength or architecture. The mechanism of action of vanadium is currently under investigation. Several studies indicate that vanadium is a phosphatase inhibitor and that vanadium can activate serine/threonine kinases distal to the insulin receptor presumably by preventing dephosphorylation due to inhibition of phosphatases Short-term clinical trials using inorganic vanadium compounds in diabetic patients have been promising.
Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats
Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Results: Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.19±0.08 vs. 0.97±0.27 ng/dL, P<0.002). The respective high BG (532±49 vs. 144±46 mg/dL, P<0.0001) and reduced plasma insulin (0.26±0.15 vs. 0.54±0.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.9±0.2 vs. 3.03±0.6 mm3, P<0.003) and TBCN (0.99±0.1 vs. 3.2±0.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.9±0.8 and 4.07±1.0 mm3, P<0.003) and TBCN (1.5±0.3 and 3.8±0.6 x 106, P<0.03). Conclusion: Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers.
Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets
We examined the effects of vanadium sulfate (VOSO4) treatment at 5 and 10 mg/kg for 30 days on endocrine pancreas activity and histology in nondiabetic and STZ-induced diabetic rats. In diabetic group, blood glucose levels significantly increased while insulinemia level markedly decreased. At the end of treatment, VOSO4 at a dose of 10 mg/Kg normalized blood glucose level in diabetic group, restored insulinemia, and significantly improved insulin sensitivity. VOSO4 also increased in a dose-dependent manner the number of insulin immunopositive beta cells in pancreatic islets of nondiabetic rats. Furthermore, in the STZ-diabetic group, the decrease in the number of insulin immunopositive beta cells was corrected to reach the control level mainly with the higher dose of vanadium. Therefore, VOSO4 treatment normalized plasma glucose and insulin levels and improved insulin sensitivity in STZ-experimental diabetes and induced beta cells proliferation and/or regeneration in normal or diabetic rats.
Vanadyl Sulfate Effects on Systemic Profiles of Metabolic Syndrome in Old Rats with Fructose-Induced Obesity
Background: Currently, energy obtained from hypercaloric diets has been part of the obesity and type 2 diabetes mellitus (T2DM) epidemics from childhood to old age. Treatment alternatives have been sought from plants, minerals, and trace elements with metabolic effects. Vanadyl sulfate (VS) has been investigated as a hypoglycemic compound in animal and human studies showing effective insulin-mimetic properties. This characteristic encompasses several molecules that have beneficial pleiotropic effects. The aim was to determine the antiobesity, hypoglycemic, and hypolipidemic effects of VS on fructose-induced metabolic syndrome in aged rats. Material and methods: Five groups of male Wistar rats were made, each with six rats: two groups with normal diet (ND) and three with high-fructose diet (HFD). The first ND group was treated with saline solution (SS), the second with VS; treatment for HFD groups was in the first group with SS, second with VS, and third with metformin. Weight, body mass index (BMI), blood glucose, and lipidic profile were measured; water, food, fructose and energy consumption were also determined. All parameters were compared among groups. Results and discussion: Although obese rats treated with VS presented anorexia, oligodipsia, and a marked weight loss in the first two weeks. They recovered food and water intake in the third week with a slow recovery of some weight weeks later. VS normalized blood glucose level and decreased triglyceride and insulin levels in obese rats. These results suggest that vanadyl sulfate shows antiobesity, hypoglycemic, and hypolipidemic properties in old obese rats and could be useful as an alternative, additional, and potent preventive treatment for obesity and T2DM control in elderly obese and poorly controlled diabetic patients. Conclusion: VS could play an important role in the treatment of metabolic syndrome, contributing to a decrease in obesity and T2DM, through different ways, such as euglycemia, satiety, weight loss, and lipid profile optimization, among others. However, more research is needed to confirm this suggestion.
Amelioration of vanadium-induced testicular toxicity and adrenocortical hyperactivity by vitamin E acetate in rats
Vanadium toxicity is a challenging problem to the health professionals and a cutting-edge medical problem. Vanadium has been recognized as industrial hazards that adversely affect human and animal reproductive health. Since testicular function is exquisitely susceptible to reactive-oxygen species, the present study elucidates the possible involvement of oxidative stress in vanadium-induced testicular toxicity and the prophylactic effects of vitamin E acetate against such adverse effects of vanadium. The study also characterizes the effects of vanadium on rat adrenal steroidogenesis and determines the underlying mechanisms of testicular and adrenal interactions in response to vanadium exposure. Significantly reduced sperm count associated with decreased serum testosterone and gonadotropins level in the vanadium-injected group of rats compared to control substantially proves the ongoing damaging effects of vanadium-induced ROS on developing germ cells. This is in turn reflected in the appreciable increase in testicular lipid peroxidation level and decline in the activities of steroidogenic and antioxidant enzymes. However, oral administration of vitamin E acetate could protect testes from the toxic effects of vanadium. Vanadium also results in adrenocortical hyperactivity, as evidenced by the elevated secretion of glucocorticoids, adrenal gland hypertrophy and increased activity of adrenal Delta(5)3beta-HSD. However, reversibility of these alterations in adrenocortical activities was vividly reflected after vitamin E acetate supplementation. All these studies reveal that oxidative stress is the major mechanism of health deterioration and that vanadium can act as a stressor metal causing chronic stress effects through excitation of hypothalamo-pituitary-adrenal axis. However antioxidant support by vitamin E acetate may provide significant protection.
Vanadium - help for blood sugar problems?
AIDS: People on protease inhibitors (PIs) may develop problems controlling their blood sugar, and may also have an increased risk of diabetes. An Australian study found that 25 percent of people on PIs had problems with glucose levels, possibly resulting from PI-induced insulin resistance. Supplements with the trace element Vanadium may help control blood sugar. Research conducted during the 1990s, showed that Vanadium sulfate supplementation significantly reduced blood sugar levels. Vanadium is found in foods such as navy beans, peas, and squash. The element has some insulin-like activity, but can be toxic because it aids in the production of free radicals. Capsules containing less toxic forms of Vanadium are under development.
Upload raw DNA data to get started with your free DNA raw data analysis today!